..

Revista de teoría y aplicaciones de la mentira generalizada

Kazhdan Lusztig Cells in Infinite Coxeter Groups

Abstract

Belolipetsky MV and Gunnells PE

Groups defined by presentations of the form â�¨s1,...,sn | si2 = 1, (sisj)mij = 1(i,j=1,...,n)â�© are called Coxeter groups. The exponents mi,j ∈ N ∪ { ∞ } form the Coxeter matrix, which characterizes the group up to isomorphism. The Coxeter groups that are most important for applications are the Weyl groups and affine Weyl groups. For example, the symmetric group Sn is isomorphic to the Coxeter group with presentation â�¨s1,...,sn | si2 = 1 (i=1,...,n),(sisi+1)3=1(i=1,...,n-1)â�©, and is also known as the Weyl group of type An-1.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado

Comparte este artículo

Indexado en

arrow_upward arrow_upward