..

Revista de teoría y aplicaciones de la mentira generalizada

Centralizers of Commuting Elements in Compact Lie Groups

Abstract

Kris A Nairn

The moduli space for a flat G-bundle over the two-torus is completely determined by its holonomy representation. When G is compact, connected, and simply connected, we show that the moduli space is homeomorphic to a product of two tori mod the action of the Weyl group, or equivalently to the conjugacy classes of commuting pairs of elements in G. Since the component group for a non-simply connected group is given by some finite dimensional subgroup in the centralizer of an n-tuple, we use diagram automorphisms of the extended Dynkin diagram to prove properties of centralizers of pairs of elements in G.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado

Comparte este artículo

Indexado en

arrow_upward arrow_upward