..

Synthesis, Biological Evaluation and Molecular Modeling of (E)- 3-Propargylene-1, 3-Dihydro-2H-Indol-2-Ones as Acetyl- and Butyrylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease

Abstract

Ying Dong, Xiao Ming Zha, Xue Ping Chu, Di Kang, Su Lan Luo, Tao Lu and Qing Fa Zhou

The synthesis, pharmacological evaluation and molecular modeling of (E)-3-propargylene-1,3-dihydro-2Hindol- 2-ones, targeting both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), are described. In vitro inhibition experiments of AChE and BuChE showed that compound 2, 5 and 12 are able to inhibit the two forms of cholinesterases in the submicromolar range. The most selective inhibitor of EeAChE (acetylcholinesterase, E.C. 3.1.1.7, from Electrophorus electricus) and eqBuChE (butylcholinesterase, E.C. 3.1.1.8, from equine serum) in this series are compound 9 (IC50=0.011 ± 0.018 μM) and compound 14 (IC50=0.12 ± 0.22 μM) respectively. But the substitution at 5- or 6- position of indolones is not generally favored for eqBuChE inhibition. Kinetic studies of the BuChE inhibition suggested that compound 1 and 5 produce a mixed inhibition pattern. The molecular modeling investigation confirmed the result and indicated that π-π stacking interaction is a main contributor to the increase of inhibition efficiency.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado

Comparte este artículo

Indexado en

arrow_upward arrow_upward