..

ID in War Times- Forensic Identification of 3 Major Types of Dental Implants Incinerated

Abstract

La Salete Alves1,2*, Mário Sousa2,3, Rui Fernandes4, João Pimenta5, Jeidson Marques6 and Serge Szmuckler-Moncler6

Teeth remains are often the only means of positive identification in an unidentified body after being subjected to high temperature injury. The routine use of dental implants made them as an active contributing element to the identification of unidentified cadavers. Their resistance to prolonged high temperature might make them a substantial contributor to the identification of high temperature burned bodies. The aim of the study was to observe the effects of high temperature on three dental implants of distinct elemental composition: C1-MIS®, made of Ti grade 23; BL- Straumann®, made of Ti grade 4 and of a Titanium-Zirconium alloy; Roxolid-Straumann®, by detecting the changes of their microstructural and elemental composition. Scanning Electron Microscopy and Electron Dispersive Spectroscopy were used to characterize the surface structure and elemental composition of the implants before and after implants being subjected to a high temperature protocol of 1375 °C for 30 minutes. Macroscopic and microscopic changes in the samples after exposure to the high temperature. Dental implants demonstrated specific macroscopic changes and microstructural deteriorations, after exposure to high temperature. After exposure to high temperature, dental implants demonstrated specific macroscopic changes and microstructural deteriorations. Although several changes occurred in the elemental content of the materials, the original elemental composition was preserved. The ability to discriminate between dental implants by elemental analyses can have a determinant impact on the identification process of burned bodies.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado

Comparte este artículo

Indexado en

arrow_upward arrow_upward