..

Sistema y Gestión de Telecomunicaciones

Front-end of Wake-Up-Word Speech Recognition System Design on FPGA

Abstract

Mohamed M Eljhani and Brian H Hight

A typical speech recognition system is push button operated (Push-to-talk), which requires hand movement and hence mixed multi-modal interface. However, for disabled patients and those who use hands-busy applications (e.g., where the user has objects to manipulate or device to control while asking for assistance from another device) movement may be restricted or impossible. One alternative is to use Speech Only Interface. The method that is being proposed is called Wake-Up-Word Speech Recognition (WUW-SR). A WUW-SR system would allow the user to operate (activate) many systems (Cell phone, Computer, Elevator, etc.) with speech commands instead of hand movements. This paper introduces a new front-end paradigm of the Wake-Up-Word Speech Recognition. The state of the art WUW-SR system is based on three different sets of features: (1) Mel-frequency Cepstral Coefficients (MFCC), (2) Linear Predictive Coding Coefficients (LPC), and (3) Enhanced Mel-frequency Cepstral Coefficients (ENH_MFCC), these features are decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUWSR. We present an experimental FPGA design and implementation of a novel architecture of a real time feature extraction processor that generates MFCC, LPC, and ENH_MFCC features simultaneously. In the WUW-SR system, the recognizer front-end is located at the terminal which is typically connected over a data network to remote back-end recognition (e.g., server). The three sets of feature extraction of speech (MFCC, LPC, and ENH-MFCC) are performed at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel, where subsequently they are decoded. Our front-end can be added to any hand-held electronic device compatible with WUW-SR and command (activate) it by using our voice only (no push to talk as is presently done). Our front-end is designed, simulated and implemented in Altera DSP development kit with Cyclone III FPGA as a portable system acting as a processor that is capable of computing three different sets of features at a much faster rate than software. It is cost effective, consumes very little power, and it is not limited by having to operate on a general-purpose computer so it can be used on any portable device.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado

Comparte este artículo

Indexado en

arrow_upward arrow_upward