Rustam Grillo*
Gauss quadrature rules are essential for numerical integration, especially in high-dimensional spaces. Traditional methods for computing these rules become computationally expensive and inefficient as the dimensionality increases. This article presents a novel fast algorithm for computing high-dimensional Gauss quadrature rules, significantly reducing computational complexity and improving efficiency. The proposed method leverages sparse grids, tensor decompositions, and adaptive strategies to handle the curse of dimensionality effectively.
Comparte este artículo